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ABSTRACT 

A wavelet variability model (WVM) for simulating solar 

photovoltaic (PV) powerplant output given a single 

irradiance sensor as input has been developed
 
and has tested 

well against powerplants in Ota City, Japan and Copper 

Mountain, Nevada [1-3]. Central to this method is a 

correlation scaling coefficient ( ) that calibrates the decay 

of correlation as a function of distance and timescale, and 

varies by day and geographic location. For Ota City and 

Copper Mountain, this   value has been determined using 

the network of irradiance sensors located at each 

powerplant. However, for applying the WVM to arbitrary 

locations where an irradiance sensor network is not readily 

available, it is necessary to estimate the   value. In this 

paper, we examine the dependence of   values on wind 

speed (at cloud altitude) and cloud size using a simple cloud 

motion simulator. 

1. INTRODUCTION 

The variability of solar irradiance can be an obstacle to 

installing large PV powerplants: grid operators may be 

concerned about the amount of variability a new PV 

powerplant will introduce into the grid. To help predict the 

variability of potential PV powerplants, we have developed 

a wavelet-based variability model (WVM) that simulates the 

variability in PV powerplant output given limited inputs[1, 

2]. The WVM scales up, taking the timeseries of a single 

irradiance point sensor as input, then using a wavelet 

transform and estimating the variability reduction due to 

geographic smoothing over the entire plant to simulate the 

power output of the entire PV powerplant. In this way, the 

WVM can be used to estimate the variability of a yet-to-be 

built solar PV plant, or the relative variability reduction 

benefit of adding more PV to an existing plant.  

In order to simulate geographic smoothing, the WVM 

models the correlations,  , between pairs of sites (i.e., 

between pairs of PV modules in a powerplant) as a function 

of distance,     , and timescale,  ̅:  

  is the correlation scaling coefficient, which varies by day 

and by site. Currently, the A value has been found 

empirically from a network of irradiance sensors at the site 

of interest, limiting the potential locations for application of 

the WVM. While most current PV powerplants do have 

dense irradiance sensor networks, there are very few other 

locations with a dense enough network of high-temporal 

resolution sensors to allow for determination of   values. In 

this paper, we create synthetic cloud fields, giving a test 

“laboratory” where we can change the wind speed and 

typical cloud size to determine the effect of these physical 

variables on   values. The goal is to obtain a better 

understanding of the behavior of   values, which should 

facilitate their prediction in areas without sensor networks. 

2.   BACKGROUND 

The key factors to the variability of PV powerplant output 

are the footprint and density (e.g., central or distributed) of 

PV at the plant. While solar power from one module may be 

highly variable, the relative variability will be reduced when 

the many modules are aggregated into the entire plant.  

While adding more modules reduces the relative variability, 

the amount of this reduction depends on the geographic 

diversity of the plant and the spatial decorrelation scale of 

cloud cover. Both of these affect the correlation between PV 

modules: the lower the correlation, the more diverse the 

modules’ output and the more heterogeneous the cloud field, 

leading to more geographic smoothing. Several previous 

studies have quantified the correlation between sites, and 

used this as a metric to simulate power plant variability. 

Step changes (deltas) in block averages of the clear-sky 

index for 23 Southern Great Plains (SGP) GHI stations, with 

sites separated by 20 to 440km showed that 1- and 5-min 
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fluctuations had nearly zero correlation between all sites, 

even at 20km distances, but deltas for times longer than 5-

min increased in correlation with decreasing distance [4]. 

Through simulation, the authors determine that six times 

less reserve resources are required to mitigate fluctuations 

for a distributed plant over 20 x 20 km than would be 

required for a central plant of the same power capacity. 

Another study  used 24 irradiance sensors – 17 stations in 

the ARM network and 7 stations in the SURFRAD network 

– to create virtual networks of irradiance sensors by 

displacing and time-shifting the sensor measurements [5]. 

20-sec, 1-min, 5-min, and 15-min fluctuations become 

uncorrelated at 500m, 1km, 4km, and 10km, respectively. 

The authors extrapolate the correlation relationships to 

model a homogeneously dispersed solar resource over a 

40x40 km grid, and find variability to be reduced  by a 

factor of 80, 40 10, or 4 over the variability of a single site. 

Further work [6] has shown that the correlation values 

collapse onto a line when the distance is divided by 

timescale. Accounting for cloud speed as determined from 

satellite further decreased the scatter suggesting a universal 

correlation law based on distance, timescale, and cloud 

speed.  

With a similar objective to the WVM, [7] used a solar 

irradiance point sensor timeseries to simulate variability of a 

larger power plant. A cut-off frequency was defined as the 

intersection of short-timescale and long-timescale linear fits 

of the irradiance Fourier power spectrum. A smaller cut-off 

frequency indicated smoothing up to a longer timescale, and 

cut-off frequency was found to exponentially decay with 

increasing PV plant area. To simulate a power plant form a 

single irradiance sensor, a transfer function based on a low 

pass filter which is scaled by the power plant area is used. 

Validation against actual PV power output showed good 

agreement between maximum power fluctuations of 

simulated and actual data.  

3.   WVM PROCEDURE 

In this section, we give a brief outline of the WVM. A full 

description of the WVM process is given in [2]. The WVM 

simulates power plant output given measurements from only 

a single irradiance point sensor by determining the 

geographic smoothing that will occur over the entire plant. 

The simulated powerplant may be made up of either 

distributed generation (i.e., a neighborhood with rooftop 

PV), centrally located PV as in a utility-scale powerplant, or 

a combination of both. In the WVM, we assume a 

statistically invariant irradiance field both spatially and in 

time over the day, and we assume that correlations between 

sites are isotropic: they depend only on distance, not 

direction. The main steps to this procedure are: 

1) Apply a wavelet transform to the clear-sky index of the 

original point sensor irradiance timeseries, 

decomposing the clear-sky index into wavelet 

modes   ̅    at various timescales,  ̅, which represent 

cloud-caused fluctuations at each timescale.  

2) Determine the distances,     , between all pairs of sites 

in the PV powerplant;        ,        .  

3) Determine the correlations, between the irradiances at 

all sites in the plant at timescales corresponding to 

wavelet modes using the equation: 
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) . If unknown, the   value 

will first have to be determined. One way to determine 

the   value is to use a network of sensors to calculate 

the correlations between sensor pairs. An example of 

this is shown in Fig. 1. 

 
Fig. 1: Sample relationship between correlation and the quantity        
 ̅ . In this case,       . 

4) Use the correlations to find the variability reduction, 

    ̅ , at each timescale. 

5) Scale each mode of the wavelet transform by the VR 

corresponding to that timescale to create simulated 

wavelet modes of the entire power plant. Apply an 

inverse wavelet transform to create a simulated clear 

sky index of areal-averaged irradiance over the whole 

powerplant,         
         . 

6) Convert this area-averaged irradiance into power 

output,         using a clear-sky power model. Clear-

sky power models range from simple linear models to 

more complicated, temperature dependent, non-linear 

models. 

Here, we focus on step (3): the determination of correlations 

by studying how the   value changes with changing sky 

conditions.   
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4.  CLOUD SIMULATION METHODS 

For study of   values, we created a cloud simulator that 

creates a cloud field with a specified typical cloud size, and 

advects this cloud field at a specified wind speed. Here, we 

opted for a very simple model, partially based on previous 

experience which has shown more complicated cloud field 

simulation methods to be very computationally expensive. 

The cloud field simulation method we used can be described 

in these steps:   

1) Picked a fine grid size over which to simulate. For this 

work, we used grids between 10,000 by 10,000 and 

20,000 by 20,000 pixels (the smaller grid sizes were 

used as computation limits required). 

2) Created a coarse grid where one pixel represented an 

area the size of the specified typical cloud size. For 

example, if the typical cloud size was 1000m and the 

fine grid was 20,000 by 20,000, the coarse grid would 

be 20 by 20 pixels.  

3) Placed a uniformly distributed ([0 1]) random number 

at each of the pixels on the coarse grid. Picked a cloud 

cover fraction: in this work, cloud cover of 0.7 (70% of 

sky covered by clouds) was always used. Set all 

randomly generated pixel values that were less than the 

specified clear-sky threshold to one to represent clouds, 

and all greater than the threshold to zero to represent 

clear-sky. In this way, a coarse cloud field is created, 

examples of which are shown in Fig. 2a and Fig. 3a.  

4) The coarse cloud field was converted to a fine cloud 

field using a 2D spline interpolation. After the 

interpolation, values that were greater than 0.8 were 

retained as clouds (set to a value 1), and values less 

than 0.8 were set to clear-sky. If there were only one 

cloud pixel surrounded by clear-sky, using a value of 

0.8 (instead of 0.5) would have the effect of slightly 

reducing the cloud size. However, in this case, there are 

many examples of clouds merging together, and we 

found the value of 0.8 to return the best results. 

Example fine cloud fields are in Fig. 2b and Fig. 3b.  

a) 

 

b) 

 
Fig. 2: (a) Coarse cloud field and (b) fine cloud field. Red represents clouds and blue represent clear-sky. These images were created for the case where 

the typical cloud size was 1000m, and the cloud cover threshold was 0.7. 

a) 

 

b) 

 
Fig. 3: Same as Fig. 2but for a typical cloud size of 300m. 
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5) Picked sensor locations to focus on. We chose 9 points 

in the bottom right of the cloud field spaced in a 100m 

by 100m grid. Then, the cloud field was advected to the 

right based on the wind speed. This resulted in a 

timeseries sampled once per second. The length of the 

timeseries depended on the grid size and the cloud 

speed: for 1 m/s wind speeds, timeseries 10,000 

seconds long were created, while for 25 m/s wind 

speeds, the timeseries were only 800 seconds long.  

Through steps (1-6), simulated irradiance timeseries were 

created. These simulated irradiance timeseries were used to 

calculate   values in the same way the ground sensors 

networks have been used to calculate   values in the past.  

5.   RESULTS 

We ran the cloud simulation to determine   values for wind 

speeds at cloud height ranging from 1 m/s to 25 m/s, and for 

cloud sizes ranging from 100 m to 3000 m. Each 

combination of wind speed and cloud size was run 10 times, 

and the means of those 10 trials were recorded, and are 

shown in Fig. 4.  

 

Fig. 4:   values calculated for each wind speed and cloud size.  

The calculated   values show a clear trend of increasing 

from low to high wind speed, and also show a weaker trend 

of increasing from small to large cloud size. Since a larger   

value indicates that sites are more highly correlated, this 

tells us that correlation between sites increases with 

increasing wind speed and with increasing cloud size. While 

the later is intuitive since with large clouds, it is more likely 

that the same cloud is covering both sites in a pair, the 

former requires some further thought. At higher cloud 

speeds, the amount of time it takes for the same cloud to 

travel between a pair of sensors in shorter, and so there will 

be a shorter lag time between the sensors. The shorter the 

lag time, the higher the correlations will be at each wavelet 

timescale that is longer than the lag time, since these 

correlations are centered on zero lag. In this simulation, we 

assume frozen cloud advection. This will not be true in the 

physical world, as cloud will be created, destroyed, and 

deform. However, the faster the wind speed the more similar 

the cloud field will be to frozen advection (since there will 

be less time to deform), and so correlations should still be 

higher for faster wind speeds.  

To better understand the relationship between   values and 

wind speed and cloud size, we fit a function of the form:  

where    is the wind speed and    is the cloud speed. The 

coefficients found for this function are shown in Table 1, 

and the function is plotted in Fig. 5.  

Table 1: Coefficients corresponding to eq. (2). 

Coefficient Value 

   0.000455 

   0.270367 

   0.000103 

   0.000502 

   0.000000 

 

Fig. 5: A values modeled with the function in eq. (2) and the coefficients in 
Table 1.  

Due to the very low values of all coefficients in Table 1 that 

multiply the cloud speed, and based on the fact that the units 

of   must be m/s to balance eq. (1), we now investigate 

modeling   values solely as a function of wind speed. Fig. 6 
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shows   values plotted against wind speed.   values show a 

clear linear increase with increasing wind speed, though 

there is some spread due to the varying cloud sizes. The line 

                   was found to fit the data best, 

and is shown in Fig. 6. This line has an R
2
 value of 0.831, 

due to the spread in the data.  

 

Fig. 6: A values plotted versus wind speed. The red line is the linear fit 

                    The lowest line of dots correspond to when 
cloud size was 100m, and are likely different due to issues with the cloud 
simulation at such a small cloud size.  

6.   CONCLUSION 

The Wavelet Variability Model (WVM) has shown great 

promise in simulating the output of PV powerplants. At this 

point, though, in order to apply the WVM an irradiance 

sensor network is required to determine the correlation 

scaling coefficient ( ). In this paper, we examined how   

values change over various wind speeds (at cloud altitude) 

and cloud sizes by using a simple cloud simulator.  

  values were found to increase both with increasing wind 

speed and with increasing cloud size. A function was 

created and plotted in Fig. 5 which can be used to compute 

the   value if the wind speed and cloud size are known. 

However, it was found that the impact of cloud size was 

small, and that   values were nearly linearly proportional to 

wind speed. This is an important finding because it 

simplifies the model for   to a linear equation, but more 

importantly, wind speeds (even at cloud altitude) are often 

much easier to measure than the much more arbitrary typical 

cloud size.   

This paper has helped to gain a better understanding of   

values and how they are related to physical variables. Future 

work will focus on testing the relationship between cloud 

height wind speed (possibly derived from sky imagery) and 

  values with measured data. If the nearly-linear 

relationship holds up, it may greatly simplify the 

determination of   values and allow for a much broader 

application of the WVM. 
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