Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

Bryan Urquhart, Chi Wai Chow, Matt Lave, Jan Kleissl
May 18, 2011
Ground-Image Based Forecasting

- High time resolution coverage
 - Limited by computing power
- Granular spatial resolution
 - Multi-megapixel cameras
- Reasonable coverage
 - ~15 km² - cloud field dependent
- Short time-horizon
 - 10 to 20 minutes
Resource Assessment Scales

<table>
<thead>
<tr>
<th></th>
<th>NWP (HRRR)</th>
<th>Satellite (GOES)</th>
<th>Sky Imager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial Resolution</td>
<td>3 km horizontal</td>
<td>1 km² at nadir</td>
<td>100 m² ground projected</td>
</tr>
<tr>
<td>Spatial Coverage</td>
<td>Continental</td>
<td>Continental</td>
<td>15 km²</td>
</tr>
<tr>
<td>Temporal</td>
<td>Hourly</td>
<td>15+ minutes (routine operations)</td>
<td>30 seconds (or faster)</td>
</tr>
</tbody>
</table>
UCSD Operational Forecasting

Monitoring Node

Image Acquisition

Calibrations

Cloud Decision

Cloud Motion

Ancillary Info

Forecast

Database

Legend

- External data
- Matlab code
- Non-Matlab software
- Internet

solar.ucsd.edu

Web Service
Cloud Decision

• Ratio of red content to blue content
 – Small values indicate clear sky
 – Values near unity indicate cloud
Cloud Mapping

- Cloud projection
 - Plane formed by cloud base
 - Ceilometer used for height
Cloud Shadow

- Shadow is projected to ground from binary cloudmap using solar angles
 - binary: clear or cloudy
- Sky condition mapped to ground (“shadowmap”)
 - 10 × 10 m grid cells
 - Topography included (SRTM1)

Topography not shown in shadowmap illustration
Sensor Network Layout

Sky Imager
Weather Monitoring Station
Photovoltaic Array
Sky Imager Coverage
TIOG
HUBB
RIMC
MOCC
BMSB
EBU2
Sky Imager

2 km
Irradiance Parameterization

- Global Horizontal Irradiance (GHI) [W/m²] parameterized as:

 \[GHI = kt \cdot GHI_{csk}, \quad kt = \begin{cases} 0.4 & \text{cloudy} \\ 1.0 & \text{clear} \end{cases} \]
Capturing ramps
Cloud Motion

- Cross correlate image subsection within prescribed neighborhood

\[t = t_o - 30 \text{ sec.} \]

\[t = t_o \]
Sky Condition Forecasting

- Binary cloudmap → binary comparison metric
 - Condition is **clear** or **cloudy**
- Sky imager derived condition determined from projected cloud shadows
- For pyranometer measurements:
 \[
 \text{clear} \equiv k_t > 0.7 \\
 \text{cloudy} \equiv k_t \leq 0.7, \quad k_t = \frac{GHI}{GHI_{csk}}
 \]
- Four possible outcomes:

<table>
<thead>
<tr>
<th>Measured</th>
<th>Sky Imager Forecast</th>
<th>match</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>clr_m clr_f</td>
<td>clr_m cld_f</td>
</tr>
<tr>
<td>Cloudy</td>
<td>cld_m clr_f</td>
<td>cld_m cld_f</td>
</tr>
</tbody>
</table>
5-min Forecast Results

a) All 4 days†
b) October 4, 2009
c) March 10, 2010

Sky Imager Forecast

<table>
<thead>
<tr>
<th>Measured</th>
<th>Clear</th>
<th>Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>clr,m clr,f</td>
<td>clr,m cld,f</td>
</tr>
<tr>
<td>Cloudy</td>
<td>cld,m clr,f</td>
<td>cld,m cld,f</td>
</tr>
</tbody>
</table>

†includes September 15, 2009 and March 04, 2010
Thank you for your time

visit us: solar.ucsd.edu